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Abstract. The density of states and thermodynamic properties of an ideal gas system trapped in
a generic power-law potential in ann-dimensional space are studied. A unified description for the
Bose, Fermi and classical gases is given by using the grand potential of the system. Consequently,
not only the results in current textbooks of statistical mechanics but also some new general important
conclusions, such as the conditions for the occurence of Bose–Eisntein condensation in a trapped
Bose system in any dimensional space, can be derived directly using the results of this paper.

1. Introduction

It is very important to calculate the density of states of particles when the method of statistical
physics is used to investigate the thermodynamic properties of some systems. In general
textbooks and literature [1,2], one mainly calculates the density of states of free particles (i.e.
in the absence of any external potential). However, real systems are often trapped in external
potentials with various different shapes, and their densities of states are very different from
those of free particles. For example, Bose–Einstein condensation (BEC), first observed in
1995 [3–5], was just an outcome of the mangetic trap and cooling techniques used to realize
the constrained role of the external potential for Bose atomic gases. Thus, it is necessary to
investigate the density of states of a system trapped in external potentials.

Although the interaction between the particles is extremely important in a real system, the
problems are made tractable and the essential physics is retained by assuming an ideal system
of non-interacting particles. It was pointed out [6] that the influence of the finite number of
particles and their interaction on the condensation temperature of BEC is several per cent, so
that it is a good approximation to treat such systems as ideal ones.

In this paper, we consider an ideal gas trapped in a generic power-law potential in an
n-dimensional space. A general expression for the density of states is derived. Starting
from the grand potential of the system, we give a unified description for the thermodynamic
properties of degenerate (Bose and Fermi) and non-degenerate systems.

This paper is organized as follows. In section 2 we derive the general expressions
of the density of states and the grand potential of an ideal system. The thermodynamic
quantities of the system are given in terms of the grand potential. In sctions 3 and 4 we
analyse the thermodynamic properties of degenerate Bose and Fermi systems, respectively.
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In section 5 the thermodynamic properties of weakly degenerate and non-degenerate systems
are straightforwardly derived from the above results. In section 6 the relation between the
density of states and the phase transition is determined. Finally, all the important results are
summarized and a short discussion given in section 7.

2. The density of states and thermodynamic quantities of an ideal system

We consider an ideal system trapped in a generic power-law potential in ann-dimensional
space with a single-particle Hamiltonian

H = ε0

(
p

p0

)s
+

n∑
i=1

Ui

∣∣∣∣ riLi
∣∣∣∣ti (1)

whereε0, p0, s, Ui, Li , andti are all positive constants, andp andri are the momentum and
the components of coordinate of a particle, respectively.

When the number of particles in the system is large and the potential energy of particles in
a trap is much smaller than their kinetic energy (this condition is often satisfied), the Thomas–
Fermi semiclassical approximation is valid [7]. Thus sums over quantum states may be replaced
by integrals over phase space. The total number of quantum states forH 6 εmay be expressed
as

6(ε) = g

hn

∫
H6ε

n∏
i=1

(dri dpi) (2)

whereh is Planck’s constant andg is the spin degenerate factor. From the expression of the
volume of ann-dimensional sphereV (n,R) = CnRn = [πn/2/0(n/2+1)]Rn, one can obtain

dV (n,R) = S(n,R)dR = nCnRn−1 dR (3)

whereS(n,R) is the surface area of then-dimensional sphere. By using equation (3) and the
Beta function

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt = 0(x)0(y)

0(x + y)

equation (2) may be expressed as

6(ε) = g

hn

∫ n∏
i=1

dri

∫ p1

0
nCnp

n−1 dp = gCn

hn

∫ n∏
i=1

(p1)
n dri

≡ gCnp
n
0

hnε
n/s

0

εn/s

(
n∏
i=1

Liε
1/ti

U
1/ti
i

)∫ [
1−

n∑
i=1

|Yi |ti
]n/s

n∏
i=1

dYi

≡ gCnp
n
0

hnε
n/s

0

ελ

(
n∏
i=1

Li

U
1/ti
i

)
F(t1, . . . , tn)

≡ α0(n/s + 1)

0(λ + 1)
ελ (4)

where

α = g2nCn
hn

pn0

ε
n/s

0

n∏
i=1

Li0(1/ti + 1)

U
1/ti
i

(5)

λ = n

s
+

n∑
i=1

1

ti
(6)
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0(l) = ∫∞0 yl−1e−y dy is the Gamma function,

p1 =
[
ε −

n∑
i=1

Ui

∣∣∣∣ riLi
∣∣∣∣ti
]1/s

p0

ε
1/s
0

|Yi |ti = Ui

ε

∣∣∣∣ riLi
∣∣∣∣ti

F (t1, . . . , tn) =
[∫ 1

−1
(1− |X1|t1)(n/s)+

∑n
i=2 1/ti dX1

]

×
[∫ 1

−1
(1− |X2|t2)(n/s)+

∑n
i=3 1/ti dX2

]

· · ·
[∫ 1

−1
(1− |Xn−1|tn−1)(n/s)+1/tn dXn−1

]

×
[∫ 1

−1
(1− |Xn|tn )n/s dXn

]

= 2n0(n/s + 1)

0(λ + 1)

n∏
i=1

0
(1

ti
+ 1
)

and

|Xi |ti = |Yi |ti[
1−∑i−1

j=1 |Yj |tj
] .

The derivative of equation (4) with respect toε yields the density of states as

D(ε) = ∂6(ε)

∂ε
= α0(n/s + 1)

0(λ)
ελ−1. (7)

For the case of a spherical symmetric potential, the Hamiltonian of a single particle
H = ε0(p/p0)

s +U0(r/L0)
t . By using the similar method mentioned above, the total number

of quantum states and the density of states can respectively be expressed by

6(ε) = α0
0(n/s + 1)

0(λ0 + 1)
ελ0 (8)

and

D(ε) = α0
0(n/s + 1)

0(λ0)
ελ0−1 (9)

where

α0 = gC2
n

hn

pn0

ε
n/s

0

Ln0

U
n/t

0

0(n/t + 1) (10)

and

λ0 = n/s + n/t. (11)

This is non-trivial. Only ifn = 1, ti = 2, or ti →∞ can equation (7) be reduced to (9). For
other values ofn andti , equation (9) cannot be deduced from (7).
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Now, we assume that the system may be described by a grand canonical ensemble. The
grand potential is defined by

q(z, β, α) = q0 +
1

b

∫ ∞
0

ln
(
1 +bze−βε

)
D(ε) dε (12)

whereβ = 1/kT , k is Boltzmann’s constant,T is the absolute temperature,z = exp(µ/kT )
is the fugacity,µ is the chemical potential,b is equal to−1, 1 and 0 for the Bose, Fermi, and
classical systems, respectively, andq0 = (1/b) ln(1 +bz). Substituting equation (7) into (12),
one can obtain

q(z, β, α) = q0 +
α

b

0(n/s + 1)

0(λ + 1)

∫ ∞
0

ln
(
1 +bze−βε

)
dελ. (13)

By using integration by parts, equation (13) may be expressed in the following form:

q = q0 + αβ
0(n/s + 1)

0(λ + 1)

∫ ∞
0

1

z−1eβε + b
ελ dε

= q0 + α0(n/s + 1)(kT )λ ×


gλ+1(z) Bose system

fλ+1(z) Fermi system

z classical system

≡ q0 +NB (14)

where

N = z
[
∂q

∂z

]
β,α

= N0 + α0(n/s + 1)(kT )λ ×


gλ(z) Bose system

fλ(z) Fermi system

z classical system

(15)

is the total number of particles in the system,

N0 = z
[
∂q0

∂z

]
β,α

= z

1 +bz
(16)

is the ground state occupation which is equal to zero compared withN except in the case of
z = 1 in the Bose systems,

B =


(1−N0/N)gλ+1(z)/gλ(z) Bose system

fλ+1(z)/fλ(z) Fermi system

1 classical system

(17)

and

gx(z) = 1

0(x)

∫ ∞
0

yx−1 dy

z−1ey − 1
=
∞∑
j=1

zj

jx
(18)

fx(z) = 1

0(x)

∫ ∞
0

yx−1 dy

z−1ey + 1
=
∞∑
j=1

(−1)j−1 z
j

jx
(19)

are the Bose and Fermi integrals, respectively.
Using the statistical expressions of the thermodynamic quantities, one can easily obtain the

thermodynamic quantities of the system from equation (14). For instance, the total energyE

and entropyS of the system are respectively given by

E = −
[
∂q

∂β

]
z,α

= NkT λB (20)
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and

S = k(q −N ln z + βE) = Nk[B(λ + 1)− ln z]. (21)

3. Thermodynamic properties of a degenerate Bose gas

The fugacityz of a Bose system is decided by the characteristics of the distribution function. Its
value must be restricted to the range 0< z < 1 and increases monotonically as the temperature
decreases. WhenT is equal to the critical temperatureTc, z = 1. WhenT < Tc, z = 1 is
kept constant and the Bose integral becomes the Riemann Zeta function, i.e.gx(1) = ζ(x).
In such a case, according toN0 = z/(1− z), there is a macroscopic quantity of particlesN0

with zero energy condensed into the ground state, while the number of particles in the excited
states decreases continuously as temperature decreases. This is the well known Bose–Einstein
condensation.

Using equations (15), (20) and (21), we obtain

N =
{
α0(n/s + 1)(kT )λgλ(z) T > Tc

N0 + α0(n/s + 1)(kT )λζ(λ) T 6 Tc
(22)

E

N
= λkT

{
gλ+1(z)/gλ(z) T > Tc

(1−N0/N)ζ(λ + 1)/ζ(λ) T 6 Tc

(23)

and

S

Nk
=
{
(λ + 1)gλ+1(z)/gλ(z)− ln z T > Tc

(1−N0/N)(λ + 1)ζ(λ + 1)/ζ(λ) T 6 Tc.
(24)

From equation (22), we can find that the critical temperatureTc and the fraction of condensation
N0/N are respectively determined by

Tc = 1

k

[
N

α0(n/s + 1)ζ(λ)

]1/λ

(25)

and

N0

N
= 1−

(
T

Tc

)λ
. (26)

It should be noted that whenT > Tc, z is a function of temperature,∂gx+1(z)/∂ ln z = gx(z),
and∂N/∂T = 0, and whenT < Tc, the number of particles of the excited states, which
contributes to the heat capacity, varies with temperature. Using equation (23), one can obtain
the heat capacity at a fixed external potential as

Cd

Nk
=
{
λ(λ + 1)gλ+1(z)/gλ(z)− λ2gλ(z)/gλ−1(z) T > Tc

λ(λ + 1)ζ(λ + 1)/ζ(λ) T 6 Tc.
(27)

From equation (27) the jump in the heat capacity at the critical temperature[
1Cd

Nk

]
T=Tc

= λ2 ζ(λ)

ζ(λ− 1)
(28)

can be calculated. The method mentioned above may similarly be used for the case of a
spherical symmetric external potential. We can obtain a series of the corresponding results, as
long as the parametersα andλ in (22)–(28) are replaced byα0 andλ0 [8], respectively.

According to equations (25) and (28), we can obtain two new criteria:
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(i) The criterion for BEC occurence

λ > 1. (29)

(ii) The criterion on the discontinuity of the heat capacity at the critical temperature

λ > 2. (30)

For a spherial symmetric external potential, equations (29) and (30) becomeλ0 > 1 and
λ0 > 2 [8]. Equations (29) and (30) indicate the dependance of BEC upon the dimensionality
of space, the kinematic characteristics of the particles, and the shapes of the external potentials.
For example, when a two-dimensional non-relativistic Bose gas trapped in a spherial symmetric
harmonic external potential is considred,n = 2, s = 2 andt = 2, soλ0 = 2 > 1. It can be
seen from criteria (i) and (ii) that BEC may occur in such a system, while the heat capacity
at the critical temperature is continuous. This differs from the case of a two-dimensional
non-relativistic Bose gas in the absence of an external potenetial, in which BEC cannot occur.

BEC of a three-dimension non-relativistic Bose gas trapped in a power-law potential was
discussed in [9, 10], and some significant results were obtained. It is of interest to note that
the results without interaction obtained in [9, 10] may be derived directly from the present
paper as long asn = 3 ands = 2 are chosen. This shows that the results obtained here
are more general and may be used to discuss the BEC of Bose systems with different space
dimensionality and different kinematic characteristics. As an example, we consider a three-
dimension non-symmetric harmonic potential and chooseU(r) = (m/2)ω2

⊥r
2
⊥ + (m/2)ω2

z r
2
z .

Then, if the experimental data in [6] are adopted, i.e.N = 40 000,ωz = 2343.63 (s−1), and
ω⊥ = ωz/81/2, we obtainTc = 288 nK for non-relativistic Bose systems. This theoretical
result is a very close approximation to the experimental result,Tc = 271 nK, given in [6].

4. The thermodynamic properties of a degenerate Fermi gas

The fugacityz in the Fermi system is not restricted. It may become very large at low
temperatures. In order to obtain the Fermi integral as a quickly convergent series, we may
introduce the variable lnz = µ/(kT ) to replacez and use the Sommerfeld lemma [11] to
expand the Fermi integral as a series:

fx(z) = (ln z)x

0(x + 1)

[
1 +x(x − 1)

π2

6

1

(ln z)2

+x(x − 1)(x − 2)(x − 3)
7π4

360

1

(ln z)4
+ · · ·

]
. (31)

At low temperatures, substituting the first two terms in equation (31) into equations (15), (20)
and (21) gives

µ = µ0

[
1− (λ− 1)

π2

6

(
kT

µ0

)2
]

(32)

E

N
= λ

λ + 1
µ0

[
1 + (λ + 1)

π2

6

(
kT

µ0

)2
]

(33)

and

S

Nk
= λπ2

3µ0
kT (34)
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where the Fermi energy

µ0 =
[
N0(λ + 1)

α0(n/s + 1)

]1/λ

(35)

is closely dependent on the space dimensionality of the system, the shapes of the external
potentials, and the kinematic characteristics of the particles. From equations (33) and (34) we
obtain the heat capacity as

C

Nk
= λπ2

3µ0
kT . (36)

It can clearly be seen from equations (34) and (36) that both the heat capacity and entropy of the
Fermi system are the same at low temperatures. This implies that they are all proportional to the
temperature. This is a common characteristic which is independent of the space dimensionality,
kinematic characteristics of the particles, and shapes of the external potentials, while only the
proportionality coefficient depends on these parameters. The properties of the ideal Fermi gas
trapped in a spherial symmentric external potential was discussed in [12]. The results obtained
there may be included in the unified description of the present paper.

5. Thermodynamic properties of weakly degenerate and non-degenerate ideal systems

When the temperature of the system rises, the value ofz decreases and becomes very small.
Substituting the first two terms in equations (18) and (19) into (17), one obtains

B ≈ 1± z

2λ+1
. (37)

Substituting equation (37) into (14), (20) and (21), we obtain the thermodynamic functions of
weakly degenerate Fermi and Bose systems as

q = N
(
1± z

2λ+1

)
(38)

E

N
= λkT

(
1± z

2λ+1

)
(39)

and
S

Nk
= (λ + 1)

(
1± z

2λ+1

)
− ln z (40)

where the positive sign in (37)–(40) holds for the Fermi system, while the negative sign holds
for the Bose system. In the limit of high temperatures, equation (37) becomes

BFermi= BBose= Bclassical= 1. (41)

In such a case, a quantum system tends to a classical system. Hence, using the above results,
we can derive the thermodynamic properties of a classical system to be

q = N (42)

E

N
= λkT (43)

and
S

Nk
= λ + 1− ln z (44)

where

z = N

α0(n/s + 1)(kT )λ
(45)

can be derived from (15).
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6. The density of states and the phase transition

It can be seen from equations (7) and (9) that whether particles are constrained by a spherial
symmetric or non-symmetric external potential, the density of states depends only on the
Hamiltonian of a single particle, while it is independent of the distribution characteristics of
the particles. The density of states of particles for ann-dimension non-relativistic ideal system
without the restriction of an external potential can be derived from (7) to be

D(ε) = gVn(2πm)n/2

hn0(n/2)
εn/2−1 (46)

whereVn is the volume of ann-dimensional container andm is the mass of a particle. It can
be seen from (46) that when other conditions are the same, the density of low-energy excited
states depends on the space dimensionality. For a three-dimensional system,D(ε) ∝ ε1/2.
When ε → 0,D(ε) → 0. Thus, the thermo-fluctuations at low temperatures are very
small, so that the system may be kept in long-range order. Only when the temperature rises
may the thermo-fluctuations destroy long-range order and the phase transition occur. For
a one-dimensional system, the density of low-energy excited statesD(ε) ∝ 1/ε1/2. When
ε → 0,D(ε) → ∞. Thus, no matter how low the temperature is, the fluctuations resulting
from the thermo-excitation are all very strong, so that the system cannot be kept in order and
the phase transition cannot take place. For a two-dimensional system, the density of states
is constant and there always exists a certain thermo-fluctuation. Thus, in general, long-range
order does not exist and there is only quasi-long-range order for two-dimensional systems. This
shows that the density of states of particles for different space dimensionalities are different
from each other, so that the properties of the different dimensional systems are different. For
example, BEC may occur in three-dimensional free Bose systems, but may not occur in one-
and two-dimensional free Bose systems.

When an external potential is present, theD(ε) ∼ ε relation will be changed. For example,
for a spherial symmetric harmonic external potential, using equation (9) we can obtain the
density of states for ann-dimension non-relativistic ideal system as

D(ε) = g

(h̄ω)n0(n)
εn−1 (47)

whereω is the frequency of the harmonic external potential. It can be seen from (47) that
for three- and two-dimensional systems, the densities of states are proportional toε2 andε,
respectively. Whenε → 0,D(ε)→ 0, so that the thermo-fluctuations are very small at low
temperatures, the system may be kept in long-range order. It is thus obvious that BEC may
occur in three- and two-dimensional Bose systems trapped in a harmonic external potential,
while it may not occur in one-dimensional systems. This is compatible with (25). It can also
be seen from equations (46) and (47) that the density of states is affected by not only the
space dimensionality but also the restriction of the external potential. For a three-dimensional
system, the existance of the external potential makesD(ε) tend to zero more quickly asε→ 0.
This shows that the system contrained by an external potential may be kept in long-range order
more easily than a free system, such that can the phase transition occurs at a higher temperature
for such a system. This conclusion has been proved by experiments. In fact, it is precisely the
restriction of the suitable external potential used by three groups [3–5] in America to achieve
BEC in 1995.
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7. Conclusions

In the present paper, the conventional method of statistical physics is used to calculate the
energy spectrum, density of states and grand potential of the system. Consequently, the
unified description of the thermodynamic proporties of a class of systems is given by using
only a few formulae. This description enables us to know quickly how the properties of a
system depends on the space dimensionality, the kinematic charateristics of the particles, the
shapes of the external potentials, and the particle distribution characteristics, and acquire a
deep understanding of the properties of the material. In particular, for a degenerate Bose gas
trapped in an external potential, two important criteria concerning BEC are given. It is of
considerable importance for a deep understanding of the properties of the quantum gas to have
revealed the common characteristics of the heat capacity and entropy of the Fermi system at
low temperatures.

Although only particles trapped in the external potentials have been studied, the results
obtained here may be used to describe a free system. Because, whenti → ∞, U → ∞ and
U → 0 in the regions|ri | > Li and|ri | < Li , respectively. This is just the condition of a free
system confined in ann-dimensional container with a side length 2Li . Using this condition,
we may obtain the density of states for a free system as

D(ε) = g

hn

n

s
CnVn

p0
n

ε
n/s

0

εn/s−1. (48)

This is simply one of the main results in [2]. Substituting equation (48) into (12), we can
derive the corresponding grand potential, from which one can find all the thermodynamic
properties of free ideal systems with different space dimensions and different particle kinematic
characteristics. For example, from equation (14) one can obtain the unified equation of states
of free ideal systems as

PnVn

kT
= NB (49)

wherePn is the pressure of ann-dimensional free system. In particular, whenn = 3, s = 2, and
ε0/P

s
0 = 1/2m, we can derive all the results of the ideal Bose, Fermi and classical systems,

as given in statistical physics textbooks. This shows once again that the unified description
obtained in the present paper is of considerable importance.
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